DOE/EERE Planning, Budget, and Analysis (Revised)

Philip Patterson (Economist) and Jeff Dowd (Economist)

DOE Hydrogen, Fuel Cells, and Infrastructure
Technologies Program
Systems Analysis Workshop
July 28-29, 2004
Washington, D.C.

Charter

- PBA's mission: to estimate the benefits of EERE programs in a consistent and defensible way.
- Benefit Group's mission: to estimate the demand for hydrogen fuel cell vehicles and the resulting impacts of their market penetration in competition with an advanced hybrid vehicle.
- Analysis Group's current/past funding sources: PBA funds for cross-cutting technologies and market analysis.

History

- History of and how long PBA has been doing analysis in general
 - PBA formed in 2002: lots of analysis had been performed by individual analysts prior to joining PBA
- List significant past analysis projects (i.e., those no longer being worked on)
 - 2050 Transportation Study: started in 1997 and completed in 2003:
 http://www.eere.energy.gov/office_eere/ba/future.html
- History and how long you've considered hydrogen in your analyses
 - VISION: started in 2000
 - Regional H2 Model: started in 2003
 - GREET: started in 1995, hydrogen was included in this version
 - Hydrogen in NEMS: started 2003
 - GIS to help regionalize EERE models: started in 2004
 - EERE NEMS: started in 2000
 - EERE MARKAL: started in 2001
 - HyTrans: started 2002

Skill Set - People

- Past analysts who helped develop our capabilities: David Greene and Paul Leiby (ORNL), Margaret Singh, Dan Santini, Marianne Mintz, Steve Plotkin, Michael Wang, and Anant Vyas (ANL), Jim Moore (TAE), Frances Wood (OnLocation), and Chip Friley (BNL)
- Current analysts and their primary roles: same as above. They conduct and review the analysis projects described later.

Skill Set - Models

VISION

- Modeling methodology: Vehicle stock model that uses NEMS assumptions to 2025 and extends them to 2050. It generates fuel use and carbon emissions.
- Model platform: Excel spreadsheet
- Model limitations: It is a "what if" model that allows the user to make any assumptions they wish with respect to how fast a new vehicle penetrates the market, the fuel it uses, and how efficient it is. Does not generate market penetrations.

VISION MODEL: H2 PATHWAYS

- Two H2 pathways in VISION model: natural gas and renewables
- Used in developing estimates of carbon emissions from light vehicle stock
- Carbon coefficients for these two pathways can be modified
- Carbon coefficients of other H2 pathways can be substituted
- Model is available on the ANL website: <u>http://www.vision.anl.gov/</u>

VISION Model: Example Illustrating the Potential Benefits of FCVs

Oil Use by Light-Duty Vehicles

 DOE results are from VISION. Compared here to two National Academies cases. This has been used by Garman and Moorer in Congressional testimony and at SAE.

Skill Set - Models

Regional H2

- Modeling methodology: demand estimation, resource availability, and cost estimation by Census regions
- Model platform: Several Excel spreadsheets
- Model limitations: No optimization, no interregional trading of H2, does not include H2A costs

Regional H2 Model

- Cost estimates have been developed for the following pathways, by region:
 - Centralized H2 production from:
 - Natural gas, coal, biomass and off-peak electricity (detailed)
 - Nuclear, wind, and solar (placeholders)
 - Distributed H2 production from:
 - Natural gas
 - Electrolysis
- The current estimates will be updated with H2A results

There Is Substantial Regional Variation in Rural Travel

Regional Variation in Size and Costs Estimated for Rural H2 Stations:

(Cost = Cost of Distributed H2 Production from Natural Gas, 2050)

H2 Costs Vary Across Regions and Over Time

(Figure Assumes that 50% of Rural Travel Is Served by Distributed H2 Production)

These hydrogen prices will be used by EIA in the 2005 Annual Energy Outlook

Regional H2 prices

Skill Set - Models

<u>GREET</u>

- Modeling methodology: full fuel-cycle analysis
- Model platform: Excel spreadsheet
- Model limitations: Not all pathways for H2 production have been added
- GREET has over 100 current users around the world
- Available on ANL website: http://www.transportation.anl.gov/greet/

GREET Includes Many H2 Production Pathways and Vehicle Applications

- Production from natural gas (central plant and distributed, from North American gas and non-North American gas)
- Production from electricity at refueling stations (U.S. average electricity, CA average electricity, and individual power plant types)
- Production from solar energy via photovoltaic
- Production from biomass (thermochemical processes with cellulosic biomass)
- Production from nuclear energy (electrolysis with nuclear power, and thermochemical processes of water cracking with high-temperature nuclear reactors)
- Production from coal (gasification) [under development]
- Production via fuel processors
 - On-vehicle production: ethanol, methanol, and gasoline
 - Station production: ethanol and methanol [under development]
- Both gaseous and liquid H2 are included; metal hydride and chemical storage are not included yet
- Vehicle applications for using hydrogen
 - ICE vehicles
 - ICE hybrid vehicles
 - Fuel-cell vehicles

Skill Set - Models

H2 Module in NEMS

- Analysis Requirements paper from contractor (OnLocation) received July 16
- Staged development suggested
- H2 module could eventually look like the electricity module
- Regional variations to be considered
- Co-production of H2 and electricity
- Some details in NEMS will not carry over to the H2 module (40 different coal types will be reduced to 3 initially)

Skill Set – Models

Regionalization of EERE Models with GIS

- Goals/objectives: Develop regional modeling capability with GIS tools and apply it to EERE integrating models
 - Apply to NEMS, MARKAL and other models
 - Apply in order to obtain improved benefits estimates
- This is a new project in 2004
- One of first applications: H2 technology
 - Development of H2 infrastructure will be highly dependent on resource distribution and location/size of end-use markets
 - Models with GIS data could be used to examine the lowest cost strategy (and alternatives) for building H2 infrastructure

GIS and Regionalization Project

- Project to identify best practices and gaps, and develop regional modeling capability for EERE.
- GIS and Regionalization Program Scoping Workshop held July 15-16, 2004 in Golden, CO. Presentations by labs and others of the regional aspects of the models. Also addressed several framework questions.
 - "Are there regionality issues and requirements unique to hydrogen, biomass, distributed generation, wind, etc."
 - What are the different levels of regionality used in different models, and should there be consistency in regional data?"
 - Can regional data be assembled and organized to enable such data to be aggregated and nested across different levels of detail for demand and supply."

Development of Regional MARKAL for EERE GPRA Analysis - Objectives

- Enhance the current model structure to measure the market impact of technologies and policies sensitive to regional:
 - resource supply characteristics (fossil and renewable)
 - economic and demographic statistics/projections
 - energy end-use pattern and intensities
- Introduce inter- and intra- regional capacity and costs in energy transportation and distribution:
 - central transmission of electricity to load centers
 - energy supply infrastructure (e.g., gas pipelines)
 - options

Approach, Activities, and Schedule

=		Į į		
	Phase 1 - FY05	Phase 2 - FY06	Phase 3 - FY07	
u-	Development of a single census-region MARKAL	Development of a full multi-region MARKAL for U.S.	Application of model to EERE GPRA Analysis	
	Peer review of data and analysis	Baseline Calibration to AEO and NEMS	Program input and scenario development	
	Model improvement - structure & data	Peer review, test runs, and documentation	Generation of GPRA analysis with regional characterizations	

Skill Set – Capabilities Summary

(Refer to H₂ Analysis Types – last Slide)

TYPE OF ANALYSIS	RESIDENT CAPABILITY?	STUDIES SPECIFIC TO H ₂ ?	MODELS SPECIFIC TO H ₂ ?
Resource Analysis	<u>Yes</u>	<u>No</u>	<u>No</u>
Technoeconomic Analysis	<u>Yes</u>	<u>No</u>	<u>No</u>
Environmental Analysis	<u>Yes</u>	<u>No</u>	<u>No</u>
Delivery Analysis	<u>Yes</u>	<u>Yes</u>	<u>Yes</u>
Infrastructure Development Analysis	<u>Yes</u>	<u>No</u>	<u>No</u>
Energy Market Analysis	<u>Yes</u>	<u>Yes</u>	<u>Yes</u>

Future

- PBA will attempt to maintain its analytical capability
- PBA will decrease its funding for HyTrans as the effort switches from model building to model use and will seek funding from HFCIT
- Continue support of adding H2 module to NEMS and seek funding from FE, NE, and EIA
- Explore the use of GIS
- PBA will work with the Fossil Energy Office in DOE to create scenarios that will offer different futures in which H2 can have an impact

Analysis Issues: Rural H2 Concerns

- What portion of today's gasoline is purchased in rural markets (i.e., is VMT a good surrogate for fuel sales in rural areas)?
- What is the current number of rural gasoline stations by volume dispensed by population density or land area?
- What proportion of rural gasoline stations are located in close proximity to one another, perhaps allowing just one station to dispense an alternative fuel such as H2?
- How many rural interstate refueling facilities are there and what are the distances between them?
- How far do rural residents travel for fuel?
- Are there differences in the answers to the above questions between rural areas contained in metropolitan statistical areas (MSAs) and those outside MSAs?
- What options are there for delivering H2 to rural areas?
- Will H2 be supplied by a single provider or by multiple providers?

Other Analysis Issues

- If H2 is provided initially by distributed production in urban areas, could it remain the primary source of H2 in the longrun?
- How many years will it take to estimate H2 regional supply curves?
- What is the practical longest distance that H2 might be transported by mode?
- What is the likely sequence for H2 to be introduced across regions? Will it be in the California region first, then New England and the Mid-Atlantic (NY, NJ and PA), then the rest of the country with the Mountains, Upper Midwest and Alaska being last?
- Should metal hydride and chemical storage be included in GREET?